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A fractional step method is developed for solving the time-dependent three-dimensional
incompressible Navier-Stokes equations in generalized coordinate systems. The primitive
variable formulation uscs the pressure, defined at the center of the computational cell, and the
volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian
components of the velocity. This choice is equivalent to using the contravariant velocity com-
ponents in a staggered grid multiplied by the volume of the computational cell. The governing
equations are discretized by finite volumes using a staggered mesh system. The solution of the
continuity equation is decoupled from the momentum equations by a fractional step method
which enforces mass conservation by solving a Poisson equation. This procedure, combined
with a consistent approximation of the geometric quantities, is done to satisfy the discretized
mass conservation equation to machine accuracy, as well as to gain the favorable convergence
properties of the Poisson solver. The momentum equations are solved by an approximate
factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the
efficient solution of the Poisson equation. Several two- and three-dimensional laminar test
cases are computed and compared with other numerical and experimental results to validate
the solution method. Good agreement is obtained in all cases. © 1991 Academic Press, Tnc

1. INTRODUCTION

In simulating viscous incompressible flows, much effort has been directed
to obtaining steady state solutions [1-3], partly because of limited computer
resources. However, numerous interesting and important fluid flow phenomena are
essentially time dependent, i.c., flow separation, vortex shedding, turbulence, turbo-
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machinery flow, and flow in biological systems. Numerous time-dependent solu-
tions of viscous incompressible flows have been reported for two-dimensional cases
[4-6]. However, to obtain time-dependent solutions of realistic three-dimensional
problems within a reasonable time, it is essential to have a computationally efficient
flow solver. The need for such a general solver has been recognized, but only
recently, with the advent of new-generation supercomputers, has it become an
achievable goal. To date, only a limited number of unsteady, three-dimensional
solutions of the incompressible Navier-Stokes equations in generalized coordinate
systems have been reported [7]. Therefore, the purpose of the present study is to
develop and validate an accurate, unsteady, viscous, incompressible flow solver for
arbitrary geometries.

Direct solution of the discrete equations resulting from the incompressible
Navier-Stokes equations is still impractical for general three-dimensional cases. An
iterative solution is difficult because of the lack of a pressure time-derivative term
in the continuity equation. Several approaches have been suggested to overcome
this problem. In the pseudocompressibility method [1,6-8] a fictitious time
derivative of the pressure is added to the continuity equation so that the modified
set of equations can be solved implicitly by marching in time. When a steady solu-
tion is reached, the original equations are recovered. Time accuracy can be achieved
by using a dual time-stepping [8] or a pseudo time iterative procedure [6, 7],
in which the solution at each time step is obtained by subiterations on a set of
equations similar to what is devised for the steady pseudocompressibility method.

Another approach used in many incompressible flow computations is the frac-
tional step (projection) method with its numerous variants [9-14]. The solution is
advanced one time step in two (or more) stages. Usually, in the first stage the
momentum equations are solved for an approximate velocity field which is not
generally divergence-free. In the second stage, the pressure and the velocity ficlds
are corrected to satisfy the continuity equation. This step leads to a Poisson
equation with Neumann-type boundary conditions. An efficient solution of the
Poisson equation is critical since it may consume a substantial portion of the total
computing time. The present procedure is developed based on a fractional step
approach. The variable definitions and the staggered mesh arrangement are
chosen to facilitate the development of an efficient Poisson solver for curvilinear
coordinates. A novel and efficient ZEBRA scheme with four-color ordering is
devised for the nonorthogonal Poisson solver. Using this scheme, a multigrid
acceleration procedure can be readily incorporated.

An important aspect of achieving accuracy in arbitrary domains is related to the
method of discretization. For example, certain geometric identities have to be
satisfied accurately in the discrete sense as well as in the continuous domain. In this
respect, the finite-volume appoach can more easily yield accurate and conservative
approximations than methods based on finite-differences [15]. Therefore, a finite-
volume discretization method in a staggered grid has been used with a consistent
approximation of the geometric quantities in generalized curvilinear coordinate
systems.
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Another important aspect related to the efficiency and the accuracy of the solu-
tion method is the choice of the dependent variables. The difficulties associated with
the pressure may be climinated by replacing the pressure with the vorticity vector.
However, the order of the governing equations is increased with adverse effects on
the computational time requirement, and the specification of the vorticity boundary
conditions is not straightforward. The primitive variables are the natural dependent
variables for general three-dimensional flow calculations. Most existing primitive-
variable solution methods use the Cartesian velocity components to describe the
velocity vector. Shyy et al. [3] used contravariant-type velocity components, but
only in the second step of a fractional step method (the correction stage). In incom-
pressible flow, most of the solution methods use a staggered mesh in order to
prevent the problems associated with the “checkerboard” behavior of the pressure
field [10]. The extension of this approach to generalized coordinate systems is not
straightforward, since the Cartesian components of the velocity cannot be uniquely
related to particular coordinate lines.

In the present study, the volume fluxes across each face of the computational cells
are chosen as dependent variables, instead of the Cartesian components of the
velocity. These variables correspond to the contravariant velocity components in a
staggered grid multiplied by the volume of the computational cell, and they make
possible a simple extension of the staggered grid approach to generalized cur-
vilinear coordinate systems. Using this choice, the discretized mass conservation
equation can be easily satisfied, with favorable effects on the convergence properties
of the Poisson equation solver.

The governing equations in an integral form are given in Section 2. The finite-
volume discretization procedure and the numerical solution method are elaborated
in Sections 3 and 4, respectively. Computed results of several validation cases are
compared with other numerical and experimental results in Section 5, followed by
a summary in Section 6.

2. FORMULATION

The equations governing the flow of constant density isothermal incompressible
fluids in a fixed control volume V with face S, are the conservation of mass

<_§ dS -u=0, (1)
S
and the conservation of momentum

%jyudV=§SdS-T, (2)
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T=—uu—Pl+v[Vu+ (Va)'], (3)

for Newtonian fluids, where 7 is the identity tensor, Vu is the gradient of u, and (-)*
is the transpose operator. The pressure is P and v is the effective kinematic
viscosity. The viscous terms are written in a form easily replaceabie by a variabie
kinematic viscosity coefficient (turbulence models) or by certain non-Newtonian
flow models.

By using the divergence theorem, Egs. (1) and (2) can be written in an equivalent
differential form. The integral formulation is perferred in the present work since a
finite-volume discretization method is employed.

3. DISCRETIZATION

reometric Quantities
ometric ¢/ fies

wlified

A general nonorthogonal coordinate system (&, 1, {) is defined (discretely) by
r=r(& n, ), (4)

where r=(x, y, z)" is the Cartesian coordinate system. In the present work, only
fixed coordinate systems are considered, although the extension to moving coor-
dinate systems is possible [167]. The computational domain (&, n, ) is divided into
uniform primary cells with mesh size 4&=A4n=4{=1, and the center of each
primary cell corresponds to the indices i, j, k. In the finite-volume discretization
procedure, the integral governing equations are approximated over the computa-
tional volumes in the physical space.
The face / of a cell is given by the vector quantity (Fig. 1)
or or

S= a0 2y ®)

The computational coordinates /= ¢&, y, or { are in cyclic order and X is the cross
product operator. The vector quantity ' has the magnitude of the area of the face
and a direction normal to it. The differential analog is S'= (1/J) VI, where J is the
Jacobian of the inverse of the transformation (4) and V! is the contravariant base
vector.

As Vinokur [15] pointed out, an accurate discretization should satisfy certain
geometric conservation laws. The condition that a cell is closed (a special case of

(1),

dS=0 (6a)
9
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FiG. 1. Definition of the primary cell.
should be satisfied exactly in the discrete form as well;
Y §'=0, (6b)

faces

where the summation (with proper signs) is over all the faces of the computational
cell. Equation (6b) may be satisfied by computing S’ from (5) at the center of each
face by a proper approximation of dr/dl. For example, the area vector S*, which is
defined at to the point (i+ 3, j, k), may be computed by using the second-order
approximation

or 1

<6— =3 (v k12— k12t 2 kv 12— o2 kv 12)i4 1725
H/iva2

(7)

or 1
5—§ _ =—2—(r/-4_ l/2,k+l/2—r/—1,’2,k—1/’2+rj+l/2.k+1/2—”r/‘+lg’2,k—l/2)i+1/2'
4 i+1/2

It is assumed that the coordinates of the cell vertices are given.

In order to ensure that the volumes of all the computational cells sum to the total
volume, the volume of each cell is computed by dividing the cell into three
pyramids having in common the main diagonal and one vertex of the cell [15]:

(S¢—1 2 +87, 2+S7:~1'2)
= . 3 r (riy V2. j+12 k+12 Lo o2 k- 12)- (8)

V=

Note that the volume V of the cell is the inverse of the Jacobian: V. =1/J, .
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Mass Conservation

Discretization of the mass conservation equation (1) for a computational cell
which coincides with the primary cell yields

(Si )y (S'f u);_n+ (87 'U)j+ 12 (S” 'u)j— 172

+(STu) 1= (S5 u) =3 S u=0, ()

faces

where Y implies summation (with the proper signs) over all the faces of a computa-
tional cell. Note that throughout the present paper the indices (7, j, k) are omitted
for simplicity whenever possible. Each term on the left-hand side of (9)
approximates the volume flux over the corresponding face. Equation (9) states that
the net mass flux (divided by the constant density) over each cell is zero, as no mass
is generated within the cell. A discretized mass conservation equation, which is
identical in form to the Cartesian case, can be derived if the volume fluxes over
the faces of the computational cells are chosen as the unknowns instead of the
Cartesian velocity components. Let

Us=S8¢u,
U'7=S"-Il, (10)
U'=S"-u,

where U*, U", and U* are the volume fluxes over the ¢, 5, and { faces of a primary
cell. Then, the continuity equation in any coordinate system takes the simple form

U; —U,'?l it U_';+l,/2_ U;Ifl/z“" Uﬁ—“/z“U}i 1,'2=Dn~(Ul)=0s (11)

£
i+1/2

where U’= (U*, U", U*). The summation operator D, is a discrete divergence-like
operator (the divergence operator itself is (1/V) D,,). In tensor algebra nomen-
clature, U’ are the contravariant components of the velocity vector (in a staggered
arrangement) multiplied by the volume V of the corresponding computational cell.
Accumulated experience with fractional step solution methods of unsteady flows
shows the importance of exactly satisfying the discrete mass conservation equation,
[10]. Therefore, the simple form of (11), which can be satisfied to round-off errors
in any generalized coordinate system, suggests that the volume fluxes are the
natural dependent variables in the context of fractional step methods. This choice
complicates somewhat the discretization of the momentum equations, but is impor-
tant for obtaining a divergence-free velocity field in generalized coordinate systems.
Summing (11) over all the cells yields the global mass conservation equation

Y U'=0, (12)
B

where Y, implies summation (with the proper signs) over all the boundaries of the
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computational domain. If velocity components are specified as the boundary condi-
tions over all the boundaries, consistency requires the exact satisfaction of the
discrete equation (12).

Momentum Conservation

Spatial discretization of the integral momentum conservation equation (2)
applied on a cell with constant volume V yields

du _
V——_E . T=F. 13
da 5 S (13)

The momentum equations should be reformulated so that the volume fluxes U’ will
be the dependent variables. This can be done by a scalar multiplication of the
vector momentum equations with the corresponding face area vector S’. Hence, the
momentum equations are projected onto the direction of the corresponding face
area vector S’ (and multiplied by its magnitude). This projection may have a
favorable numerical effect provided the coordinate system is approximately aligned
with the flow field. The discretization of the momentum equations for each U’ is
performed on a different computational cell. Each cell has the formal size of
A& x An x A{ in the computational space, but the centers are located at (i + 3, j, k),
(i, j+ 3 k), and (i, j, k+ 1) for the U¢, U”, and U* momentum equations, respec-
tively. This choice is in accordance with the conventional staggered-grid discretiza-
tion practice.

The derivation of the £-momentum equation will be described in this section. The
other two momentum equations can be obtained by cyclic permutation.

The control volume used for the discretization of the U¢-momentum equation is
shown as the shaded region in Fig. 2. The center of the cell is marked by the indices
(i+3, j: k). Dotting S?, | , with (13) yields

du dut, |, :
s,é.,.]/z'(VE) = Vi+1,"2 ‘fzs;?+l,”2'
i+ 172

Fiiin (14)
for a fixed grid. The term F,, ,,, is the total flux through the computational cell of
the &-momentum equation. The evaluation of F,, , , requires three times more com-
putational work than the standard scalar version since the flux vecror should be
computed on each face.

The static pressure P and the effective kinematic viscosity v are defined at the
center (i, j, k) of each primary cell. The definition of the discrete pressure at this
point is important for obtaining the standard second-order approximation of the
Poisson equation, which is derived in the process of the fractional step solution of
the discrete equations (see Section 4). The present definition of the volume fluxes
and the midcell location of the pressure are equivalent to the staggered formulation
of conventional fractional step solution methods.
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F1G. 2. The computational cell (shaded) of the {&-momentum equation.

In the following subsections, the temporal and the spatial discretization of the
U‘-momentum equation will be elaborated separately.

Temporal Discretization

The U-momentum equation (14) is rewritten in operator form as

dUs, |,
Cixpoyp,, 15
d g (15)

Vi+ 1/2
where L includes the right-hand-side terms of Eq. (14). For numerical reasons, the
operator L, must be split into several parts, which should be treated differently in
the process of the time-discretization and the numerical solution

L:=C(U)+R.(P)+ D (U)+D_(U). (16)

The convection terms are included in the nonlinear operator C.(U’), and the
operator R.(P) includes the pressure terms. The linear operators D (U') and
D, .(U') are the implicit and explicit parts of the diffusion terms, respectively. The
approximate factorization solution method (see Section 4) and the numerical solu-
tion of the momentum equations require explicit treatment of the diffusion terms,
which do not fit a scalar tridiagonal pattern of the coefficient matrix of the
approximate factorization steps.
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A general second-order-accurate scheme, with explicit approximation of the
convection and certain diffusion terms, is given by the three-time-level scheme

(1+8) (U5 — (14 26)(U5)" +o(UF)" !

Vi+1,/2 At
3 1 )
“(3re)ra(3ee) e
+0,(Ry* = 2RI+ RE ™) +0,(Di+! —2D1+ D1 ), (7)

where » is the time level and ¢, 8,, and 6, are parameters to be selected for a par-
ticular scheme. Higher-order approximations of the convection terms can be used
without major additional computational cost because of its explicit approximation.
The explicit approximation of the convection terms restricts the maximum
allowable time step for stable solutions. This restriction may be too severe for
steady solutions but acceptable for time-dependent solutions where physical reasons
limit the time step anyway.

One of the simplest choices of the free parameters is 0,=6,=0.5, ¢=0
(Adams-Bashforth/Crank—Nicolson scheme). However, an analysis by Beam and
Warming [[17] demonstrates that the split form of a purely parabolic equation with
explicit approximation of the mixed derivatives is not stable for this choice of
parameters. Stable solutions may be achieved by a proper choice of ¢, §,, and 6,.
Generally, the analysis of a simplified parabolic model problem shows that a
necessary condition for the stability of the factored scheme is ¢> —3, and
0=2(1+¢)*/(3+4¢) (for 8,=0,=0) [17].

A more general scheme can be obtained by choosing A%‘=
(4U%)" =, (4U%)"~" and 42 =A4P"—ua,AP""' as the unknowns. Note that
AP" ="+ — @ where @ = (U, P). Equation (17) takes the form

. At
V,-+1/z AﬂZlg=G+m(H,JDi(AOle)—F@,.RC(Ag’)), (18a)
where
& Eyn - At 3 n 1 n
G=(1+8‘O‘u> Vi 12(4U°) 1+—1+8<<5+8> LC*<§+8> L !
+(a,,—1)9,R5(AP)"'+(o¢u—l)0dD¢(AU5)"l) (18b)

includes all the terms from the previous two time levels and the parameters «,,, «,
are to be selected. The choice «,=a,=0 corresponds to the well known “delta
form” where the unknowns are of order 4¢, whereas o, = a, = 1 results in the most
accurate scheme for an approximate factorization solution method since the
unknowns are of order (41).
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Spatial Discretization

The finite-volume discretization of the £-momentum equation is performed on a
cell centered at (i+ 1, j, k), as is illustrated in Fig. 2. The time marching scheme
(18) requires the computation of the operator L, and of the linear operators R and
D which also appear in the implicit part of (18a). For the time level n, L} is
defined by

ngszil/z'zsl']_m’ (19)
/

where the summation (with the proper signs) is over all the faces of the computa-
tional cell. To compute the fluxes over each face, the velocity vector should be
computed from the volume-flux unknowns by the identity

u=S.U°+S,U"+S,U*=S,,U". (20)

From (10) and (20) one obtains
U'=S"-u=8"8§,0U" (21a)

n

The invariance of the velocity vector requires

S-S, =4, (21b)
where 6/ is the Kronecker delta and 8, is the inverse base of S”. It has the differen-
tial analogue S,, = J(0r/0m) so that in terms of tensor algebra, S,, is the covariant
base vector multiplied by the Jacobian J, while S is the contravariant base vector
multiplied by 1/J. A uniform velocity field can be numerically preserved if the base
S,. is computed at each point from the relation

Sm+1 ><Sm+2
Sm:sm.(sm+lxsm+2) (22)

which satisfies (21b) identically. Here m is the cyclic permutation of (¢, #, {).
The ¢-face center of the Ut-momentum cell is at the point (i, j, k) (Fig. 2). The
flux over this face is computed from

(ST, ,,=(—UUS,—S°P+S* - v(Vu+ (Vu)")), .- (23)

The conservative form of the velocity vector gradient is

Vu= (3{ dSu> / V. (24)

581/94/1-8
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Applying (24) to the computation of Vu, , , yields

— 4 4
V“zzj,k =—(S;, 120412~ Si iU

V
7 Q" { Q¢
+S/+1/2“/+1/2 Sj 1/2“;'”1,r2+Sk+1,v2“/<+1/2 S 12U )

1
— (] U Q¢ ‘
- V(Si+l,/ZS/.i+l,'2 i+ 12 Si« ]/’ZS/.ifl,'Z Ui—fI/Z

n ! _Qn !
+ Sj+ l,/ZS[,j+ 172 U/'+ 172 Sj — l,r’ZSI.jf 172 U/' - 172
4 ! !
+ Sk+ 1/2S1,k+ 12 Uk +1,27 S;(7 1/2S/,k —1;2 ka l,"2)' (25)

In the present work, the fluxes at the point (i, j, k) are computed by a second-
order-accurate averaging and therefore the scheme is equivalent to second-order
central differences. In some high Reynolds number cases, artificial diffusion should
be added to smooth out the solution. In the present work, fourth-order numerical
diffusion is implemented. In order to keep the conservation properties of the
scheme, the artificial diffusion is formulated in terms of fluxes. Lower-order numeri-
cal diffusion is omitted in order to keep the second-order accuracy of the scheme
and minimize the effect of the numerical diffusion.

The n- and {-face centers are at (i+3, j— 3, k) and (i +3, j, k — 3), respectively.
The fluxes over these faces are computed in a similar way (see details in [18]).

Geometrical Considerations

The approximation of the fluxes at the computational cell faces requires the
determination of the geometric parameters S’ and S, at numerous points for each
computational cell. If uniform velocity is to be preserved, S, should be evaluated at
each point from (22) at the cost of more than 2000 additional operations for each
cell. On the other hand, the available memory of present computers still imposes
certain limitations on the number of geometric parameters that can be stored. In
the present work, a compromise between CPU time and storage requirements has
been made by storing only the quantities S¢_,,, 8”7_,,, S;_,,. S, 12, S,, 12
S.x 1-and V. for all the computational cells. The base S’is computed from (5
while S, is computed from (22).

The geometric quantities at other positions are computed by simple averaging. It
can be shown [157 that this averaging satisfies the geometric conservation laws
(closed cells and invariance of the total volume) even though a uniform free-stream
velocity is not fully preserved since (22) is not satisfied at all points. In most cases
the approximation of the S, terms by simple averaging will not lead to a serious
degradation of the results. This approximation affects only the computation of the
momentum equation fluxes (the continuity equation is solved to machine accuracy).
Near solid boundaries where large gradients usually occur, this approximation
introduces only small errors, since a fine (and nearly orthogonal) mesh can be used.
Far from a solid boundary, the velocity gradients are small (especially for external

)
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flows) so the errors introduced by this approximation are small. Moreover, in these
regions the flow is usually potential and therefore the continuity equation, which is
not affected by this approximation at all, plays the major role. The accuracy of the
approximation of the momentum equation is a less important factor in these
regions. Further details on the various approximations are given in [18].

4. SOLUTION METHOD

The Fractional Step Method

The simultaneous solution of the large number of resulting discrete equations is
very costly, especially for three-dimensional cases. An efficient approximate solution
can be obtained by decoupling the solution of the momentum equations from the
solution of the continuity equation by a fractional step method. The basic fractional
step (or projection) method was proposed by Chorin [9]. The MAC method
proposed earlier by Harlow and Welsh [14] is actually a variant of that method.
The two methods are identical as long as the boundary conditions are not con-
sidered (see [19] for a detailed discussion of the relationship between the numerous
variants of the fractional step method).

In the present implementation, first the momentum equations are solved for an
approximate A%’ by dropping R,(42) from (18), so that the pressure gradient is
taken from the previous time-level

8,4t ~
N — AU =G, 26
(Vm+l,2 1+8D/) (26a)

where I is the identity operator. The resulting flow field does not generally satisfy
the mass conservation equation. In the second step 4%’ is updated by

) . 0,4t
Vm+ 1/2(AU2[/_ A%/) = 1 +e

R/(9) (26b)

so that the continuity equation (cast in terms of A%') will be satisfied at the level
n+1,

D, [(UY' + o, (AU~ 4+ 4%'] =0, (26c)

where m=1, j or nfor [=£&, n, or {, respectively, and D,, is the summation operator
defined by (11). The variable ¢ is a scalar to be defined later.

Equations (26b) and (26c) are combined into a single discrete Poisson equation,
which is easier to solve than the fully coupled set of the original equations, by
applying the operator D,, on (26b),

1+¢
8, At

(26d)

D, [(UY +a,4U'y '+ A% ] =D, ( R,(4) )

Vm + 172
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since D, ((U')"*')=0. Note that the discrete Laplacian operator is given by
—(1/V) D, (R/V). Finally, the variables at the new time level n+ 1 are computed
from

(U/))z+l=(Ul)n_i_ocu(AU/);« 1+A01ll
AP =¢ (26e)

Pl =P, AP" 4+ AD.

Substituting A%’ from (26b) into (26a) does not recover the original discrete
momentum equation (18) if the substitution 42 = ¢ is used, since the computation
of the viscous terms in (26a) is based on A%’ rather than on A%’ It is shown in
Appendix A that (U')"*' is the exact solution of the discrete equations, but 42 =
@+ O(v 4t) and therefore P**! is not the exact discrete solution. For a Cartesian
case with e=0 and 0,=4, Kim and Moin [11] have derived the exact relation
AP = ¢ — (v At/2) V¢, where V? is the Laplacian operator. However, such a simple
relationship cannot be found in generalized coordinate systems with the present
splitting of the diffusion terms (which does not satisfy certain vector identities).
Braza etal. [20] have found (in the case of vortex shedding over a circular
cylinder), insignificant differences between solutions which use the approximation
A2 = ¢, and solutions which compute the discrete pressure exactly although the
approximate solution might be less stabie. Because the difference between ¢ and 42
is proportional to v, the direct substitution A% = ¢ is reasonable for high-Reynolds-
number flows. This approximation degrades the second-order temporal accuracy of
the pressure to first-order accuracy since this substitution is of the order O(4¢).
However, as can be seen from (26b), the velocity solution remains second-order
accurate in time.

The first step (26a) is a consistent approximation of the momentum equations,
ie, as (dt, AIy—0, (U')"*' > U', where U’ is the solution of the continuous
problem. Therefore, the physical boundary conditions may be specified from the
n+ 1 time level. In some fractional step methods the substeps are not consistent and
special boundary conditions should be devised for the intermediate steps [11].

The drawbacks of the present fractional step method are the increased storage
required for the three-time-level method and the restriction on the maximal
Courant number (CFL) due to the explicit treatment of the convection terms. The
CFL number restriction is tolerable for many time-dependent solutions where the
physics dictates a time step of the order CFL = 1, anyway. This restriction can be
alleviated by including the convection terms in the implicit part.

The discrete momentum equations (26a) are solved by an approximate factoriza-
tion method. The explicit treatment of some of the terms might degrade the stability
of the method, especially for very skewed meshes. In the present method, special
measures have been taken to alleviate these problems. The three-time-level dis-
cretization method improves the stability properties over the more commonly used
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two-time-level methods, especially when mixed derivatives exist. The three-time-
level scheme also maintains second-order accuracy in time, even for formulations
which approximate certain terms explicitly [17].

Solution of the Poisson Equation

The discrete Poisson equation (26d) can be rewritten as

L) =/, (27a)
where the source term f is given by
l+e 1yn Iyn—1 it
= =9 AtDi”((U) +o, (AU + AUY). (27b)

If Egs. (26b) and (26c) are to be satisfied exactly, the Laplacian-like operator &
should be computed discretely from the identity

L($)=D, ( R(9) ) (27¢)

Vm +1/2

The discrete divergence-like operator D,, is defined in (11). The discrete gradient-
like operator R, is evaluated from the pressure terms which appear in the expressions
for the computation of the fluxes. It is equal to the finite-volume approximation of
the pressure gradient based on the scalar version of (24), dotted with S’.

The normal-derivative (Neumann) type boundary conditions for each boundary
[ is computed from (26b),

1+¢

S
8, At

m

R/(9) w12 (AU = AT"). (27d)

At periodic boundaries, periodicity is used. If Dirichlet-type boundary conditions
are specified for the velocities, condition (27d) is homogeneous. The compatibility
condition necessary for the existence of a solution to a Poisson equation with
derivative boundary conditions over all the boundaries, Y /=0, is automatically
satisfied because of the imposed global discrete mass conservation (12). Note that
“numerical” boundary conditions for the pressure are not required since the
pressure is defined at the center of each cell.

An efficient solution of the Poisson equation is crucial for the efficiency of the
whole solution method. For a general nonorthogonal coordinate system, the 19-
point based discrete equations pose difficult challenges in obtaining fast solutions
on vector computers. Many iterative methods cannot be efficiently vectorized and
suffer from degradation of the convergence rate due to the sharp variation of the
coefficients. The present solution method uses a novel application of a ZEBRA
method with four-color ordering to decouple the implicit part of the algebraic equa-
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tions and allow an effective vectorization of the Poisson solver, without deteriorating
the convergence properties.

The three-dimensional ZEBRA scheme is an iterative solution scheme which
solves implicitly all the equations along one coordinate line, say along &, as in the
successive line over relaxation (SLOR) method. However, the order in which the
lines are processed is not the usual lexicographic order (by rows or columns), but
a “colored” order, devised so that the implicit solution of a line is decoupled from
the solution of the other lines that belong to the same color. Most existing applica-
tions of the ZEBRA scheme use a two-color ordering (“red—black™ schemes). This
ordering is inappropriate for nonorthogonal cases. In the present method, the
points in the (y, ) plane are classified into four groups and a different color label
is given to each group (Fig.3). First, all the “black” lines are swept in a
lexicographic order, then the “red,” “blue,” and “green” lines, respectively. The
implicit solution of a line is decoupled from the same color lines; for example, when
solving for a “black” line, all the neighboring lines are of different color-—"“red,”
“blue,” or “green.” This arrangement enables an efficient vectorization of the
method, even with the 19-point computational stencil. The implicit solution along
the ¢ coordinate line may be exploited to enhance convergence of problems with
heavily clustered mesh points along that direction.
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FiG. 3. The labeling of the points in the (#, {) plane for the Poisson equation solver.
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A mathematical analysis of the ZEBRA method reveals that although each sweep
of a color is equivalent to a line-Jacobi iteration, one complete iteration has the
better convergence properties of the SLOR method. Therefore, the convergence
properties of the present Poisson solver are similar to the SLOR method, but the
required CPU time on a vector computer is significantly reduced because of the
effective vectorization of the ZEBRA method. Moreover, the ZEBRA scheme has
good smoothing properties and is nearly an optimal relaxation method for using a
multigrid acceleration procedure.

A detailed study on the properties of the Poisson equation solver and a future
implementation of a multigrid acceleration procedure will be reported in a separate

paper.

S. RESULTS

Several representative cases have been solved to validate the solution procedure.
The test cases include the flow in two- and three-dimensional driven cavities; the
unsteady flow over a two-dimensional circular cylinder, with and without vortex
shedding and the three-dimensional flow in a square duct with a 90° bend. Some
steady cases are chosen as well, since most available experimental and numerical
results are restricted to this regime. To fully validate unsteady solutions, it is
necessary to establish data bases for time-dependent cases, in particular for three-
dimensional configurations.

The basic ZEBRA solution method of the Poisson equation is implemented using
an over-relaxation parameter determined expeirmentally. No difficulties were
experienced in converging the Poisson equation to machine accuracy in any of the
cases; consequently, a divergence-free velocity field could always be obtained. The
convergence criterion for the maximal residual was set to 10~ *. That residual equals
the divergence of the velocity multiplied by the volume of the computational cell
(see (26d)), so the mass conservation equation divided by that volume is converged
to the same order of magnitude.

A stability condition of the present solution method cannot be analytically
derived. Numerical experiments shows that the method (without the addition of
artificial diffusion) is stable for CFL < f(Re), where CFL is the maximal Courant
number defined by the maximum value of

[u] Jo| | Iwl
CFL=(-—+—
<A.\‘ Ttz

) oAt
)Az=<|U5|+rw+|Us|)7, (28)

over all the computational cells. The Cartesian velocity components are given by
u, v, w, and 4x, 4y, Az are the physical mesh sizes in the corresponding directions
and V is the volume of the computational cell. In the absence of fourth-order
smoothing terms, the function f(Re) is a monotonically decreasing function of the
Reynolds number (nor the cell Reynolds number). Usually, f(Re)=10.5—1 results
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in stable solutions. The maximum cell Reynolds number is of the order 10! — 102
in all the computations. By adding fourth-order artificial diffusion terms, the time-
step can be increased beyond this limit without introducing numerical instabilities.

The set of free parameters ¢, 0,, 0,, «,, and «, can be adjusted to enhance the
stability of the time-advancing scheme. In the present study no attempt was made
to find the optimal values. In most of the test runs the following values were used:
€=0,0,=1,0,=1,and a,=0a,=0.

Some convergence tests have been conducted to confirm the accuracy of the
scheme by systematic refinement of the mesh size and the time-step. Both non-
uniform Cartesian and generalized coordinate systems have been tested. The
discretized equations are second-order accurate in both space and time. However,
because of the substitution 42 =¢ (see Section 4), the temporal accuracy of the
pressure is decreased to first order. The scheme was indeed found to be second-
order accurate in space, and the second-order temporal accuracy of the velocity has
been verified as well. The convergence tests show that the pressure is almost 3-order
accurate in time, which is better than the theoretical prediction.

The computer code is written for general three-dimensional problems. Two-
dimensional cases are solved by using two intervals in the third direction and
specifying periodic boundary conditions along that direction. The solution method
consumes from 0.3 to 1 - 107* CRAY-XMP CPU s/mesh-point/time-step, depending
on the number of iterations required for the convergence of the Poisson solver. A
substantial reduction in CPU time is anticipated by implementing a multigrid
acceleration of the Poisson solver.

FiG. 5. The geometry and the mesh for the lid-driven polar cavity flow problem.
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Selected results are presented in the following sections. Additional examples can
be found in [18, 21).

Lid-Driven Cavity Flow

The flow field in a unit cubic lid-driven cavity was solved in several studies, i.e.,
[22, 23]. In the present work a uniformly distributed grid of 31 x 31 x 31 points is
used to advance the solution in time until a steady state is reached for Re = 100 and
Re = 1000. The grid is identical with the one employed by Hwang and Huynh [23]
so that a direct comparison can be made with their solution. The distribution of the
y-component velocity along the geometric centerline (y =z =0.5) is compared with

B

FiG. 6. Velocity direction for the polar cavity flow at Re = 350.
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other numerical solutions [22, 23] in Fig. 4. Good agreement is obtained for both
Reynolds numbers.

The two-dimensional lid-driven flow in a polar cavity was studied by Fuchs and
Tillmark [24], both experimentally and numerically. This geometrically more
challenging flow is also computed in the present study. Figure 5 shows the geometry
of the problem and the 51 x 51 x 3 mesh used in the present computation. The height
AB of the cavity is equal to the radius of the boundary 4D. A polar coordinate
system is used with grid points clustered near the walls. Zero velocity is specified
on all the boundaries, except on the AD boundary, where a unit tangential velocity
is given.

The steady flow was computed for two Reynolds numbers, Re =60 and Re =350
(based on the height of the wall 4B and the tangential velocity of the wall AD), for
which experimental and numerical results are given in [24]. In the present paper,
only the results for the higher Reynolds number will be described.

Figure 6 gives the velocity-direction plot (all velocity vectors are plotted with
equal magnitude) for the Re =350 case. The resulting flow field is similar to the
two-dimensional square cavity flow. A main vortex and two secondary vortices are
formed in the center and at the two corners B and C, respectively. The centers of
the vortices agree with a flow visualization obtained by Fuchs and Tillmark [24]
within an error of less than 2%. Figure 7 compares the radial and circumferential
velocity components with the experimental results of Fuchs and Tillmark [24]
along the three radial lines # = —20°, 0°, and 20°. Also shown are their numerical
results obtained by a stream-function vorticity formulation written in a polar coor-
dinate system. Generally, favorable agreement is obtained among all the results.
Note in particular the very good agreement in the numerical results, although the
present numerical results are obtained using about 2.5 times fewer mesh points. The
grid points are more efficiently distributed in the present study than in the uniform
grid employed by Fuchs and Tillmark [24]. The small deviation of the numerical
results from the experimental results is probably because of the three-dimensional
effects which were found in the experiment [24].

Flow over a Circular Cylinder

The two-dimensional flow over a circular cylinder is solved as an example of an
external flow over a bluff body. The resulting flow field strongly depends on the
Reynolds number. For 40> Re > 6 a steady state exists, with a pair of symmetric
separation bubbles on the leeward side. At higher Reynolds numbers the flow field
is inherently unsteady and is characterized by cyclic vortex shedding.

In the present work, the time-dependent flow field over a two-dimensional
circular cylinder is computed for a range of Reynolds numbers 1000 > Re =40
{based on the diameter). The symmetrical flow is solved for an impulsively started
cylinder at Re =40 and Re = 550 while the asymmetric case with vortex shedding
is simulated for Re = 100, 200, 550, and 1000. The no-slip condition is given on the
cylinder and uniform velocity is specified on the far-field boundary.
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Symmetric Flow

The symmetric flow for Re=40 is solved using a nonorthogonal coordinate
system with 45 x 73 x 3 mesh points in the radial, circumferential, and axial direc-
tions, respectively. A non-concentric circular outer boundary with a radius of 20
units (cylinder diameters) is constructed. The center of the outer boundary is shifted
into the wake region 15 units from the center of the cylinder. The case with
Re =550 uses a cylindrical grid with a concentric outer boundary at a distance of
50 diameters and 81 x 85 x 3 mesh points. In both cases, mesh points are clustered
near the cylinder and in the wake region.

The time evolution of the separation length {measured from the rear of the cylin-
der and normalized by the diameter) for Re =40 is compared with the numerical
results of Collins and Dennis [25] and with the experimental results of Coutanceau
and Bouard [26] in Fig. 8. Good agreement is obtained, especially at the initial
stages of the flow evolution (7 < 8). The slight discrepancy for ¢ > 8 is attributed to
“wall effects” which exist in the experimental case because of the water tunnel walls
and in the present numerical solution because of the Dirichlet-type boundary condi-
tions at the outer boundary.

At a higher Reynolds number, stable symmetrical flow exists only for a short
period of time. In Fig. 9 the time evolution of the separation length for Re = 550 is
compared with the numerical solution obtained by Loc [27] using a two-dimen-
sional stream-function vorticity formulation and with the experimental results of
Bouard and Coutanceau [28]. The two numerical solutions compare favorably, but
slightly under estimate the experimental results. A good agreement in the numerical
results is observed although totally different methods and grids are used. In the
present study a substantially coarser mesh is employed and a spatially second-
order-accurate scheme is used, while Loc [27] uses a fourth-order-accurate scheme.

25
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FiG. 8. Time evolution of the separation length behind the circular cylinder at Re = 40,
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Asymmetric Flow

At a Reynolds number higher than 40 any perturbation excites an unsteady flow
and eventually a periodic vortex shedding is established generating the well-known
von Karmén vortex street. This phenomenon has been addressed in several
previous numerical and experimental works; see Refs. [35, 19, 20, 26] for a more
comprehensive review.

In the present study, the laminar vortex shedding over a circular cylinder is
simulated at Reynolds numbers of 100, 200, 550, and 1000. The analysis of the flow
field properties and the explanation of the dynamical phenomena associated with it
are beyond the scope of the present paper. The main concern here is in validating
the numerical method and studying its properties and capabilities.

A cylindrical coordinate system is used with 81 x 85 x 3 mesh points in the radial,
circumferential and axial directions, respectively. The concentric outer boundary is
at a distance of 50 diameters from the center of the cylinder. Mesh points are
clustered near the body and in the wake region. The minimal radial spacing near
the cylinder is 0.014, while the maximal radial spacing at the outer boundary is
2.15. The ratio between the maximal and the minimal Jacobian is of the order
10* — 10°, which is quite high and might create numerical difficulties resulting in
inaccurate solutions, unless the geometric quantities are approximated consistently.

The vortex shedding is triggered by an asymmetric perturbation which consists
of rotating the cylinder a short period of time in the clockwise and then in the
counterclockwise directions, [5]. The computation is performed within a limited
nondimensional time (# <40} in order to minimize the wall effects. It was found
that a small amount of fourth-order artificial diffusion should be added for

15 . .
\
1.0}
L ——— PRESENT
A BOURD & COUTANCEAU
N TA PHOC LOC J
..
()} 1 2 3

TIME

FiG. 9. Time evolution of the separation length behind the circular cylinder at Re = 550.
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Re > 200 in order to smooth out the solution in the far wake region, where the grid
is coarse.

The time evolution of the lift and the drag coefficients as a function of the
Reynolds number is given in Fig. 10 In each case, followmg a relatively short

boman e « £ Mla. L4 L ... oA F TR | PR I | ~

number obtained in the present study with other numerical and experimental
results [10, 20, 29]. Considering the complexity of the problem and the wide spread
in the results, reasonable agreement is obtained, although the present results predict
a slightly high Strouhal number for Re > 500.

Figure 12 shows a partial view of the grid in the vicinity of the circular cylinder
for the case of Re =200. Figures 13a and b compare the instantaneous streamlines
for five equally spaced instances along one vortex-shedding cycle with the results
obtained by Rogers [30] for an identical case. The time is normalized by the
period and =0 corresponds to the instant when the lift coefficient is maximal.
The lift coefficient is minimal and the drag coefficient is maximal at 7= 1, while at
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FiG. 10. Time evolution of the force-coefficients on the circular cylinder at various Reynolds numbers.
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FiG. 13. Instantaneous streamlines for one vortex-shedding cycle (Re = 200).
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t=17 and 1= 13 the lift coefficient vanishes and the drag coefficient is minimal. The
corresponding pressure fields for both solutions are shown in Fig. 14 for the
same instances. The centers of the concentric pressure contours in the wake region
correspond to a local minimum in the pressure.

The periodic characteristics of the flow can be clearly seen. The flow fields at the
beginning of the cycle (1=0) and at the end of the cycle (#= 1) are essentially iden-
tical. Moreover, the flow field at 1=1 is a mirror image of the flow field at 7=0.
A similar relationship is found between the flow fields at = ; and 7= 3, when the
instantaneous lift coefficient vanishes. A large separation bubble is created at the
upper side of the cylinder at r=0. The bubble induces a low pressure field, which
causes a large positive lift coefficient, as well as maximal drag. The bubble
ultimately separates from the body and is washed downstream (¢ = %). The lift coef-
ficient is decreased to zero and the drag coefficient is minimal at that time, (Fig. 10).
At =1 a large separation bubble is created at the lower side, reversing the direc-
tion of the lift coefficient. This bubble is washed downstream as well and creates the
lower vortex of the von Karman vortex street. The centers of the shed vortices are
characterized by a low pressure region.

Rogers [30] solved an identical case using the same grid and time-step but a
different numerical method. His method is based on the artificial compressibility
procedure with a fifth-order upwind scheme, second-order temporal accuracy, and

(a) Rosenfeld

F1G. 14. Pressure contours for one vortex-shedding cycle (Re = 200).

581/94/1-9
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TABLE 1

Comparison of the Lift (C,) and Drag (C,) Coefficients and the
Strouhal Number (Sz) for the flow over a circular cylinder at

Re =200
Cp c, St

Gerrard [31] (exp.) 0.18-0.20
While [32] (exp.) 1.3
Lecointe and Piquet [5]

2nd order 1.46 +0.04 +0.70 0.23

4th order 1.58 +0.0035 +0.50 0.19
Gresho ef al. [10] 1.76 +£0.09 +1.05 0.21
Braza et al. [20] +0.77 0.20
Rogers [30] 1.33+£0.05 +0.68 0.19
Present 1.31+0.04 +0.65 0.20

FiG. 15. The effect of Reynolds number on the streamlines at maximal lift coefficient.
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characteristic boundary conditions [6, 7]. Despite the differences in the numerical
algorithms good agreement is obtained, as shown in Figs. 13-14. The results com-
pare particularly well in the regions near the circular cylinder, where the resolution
of the grid is adequate in both solutions. The apparent discrepancy in the stream
function contours at the center of the vortices is due to a small difference in the
time of the corresponding plots (although the time increment is equal, the starting
times of the shedding cycles are not the same since the triggering mechanism of the
vortex shedding is different). The agreement deteriorates somewhat at the far wake
region, where the mesh size is of the order of the cylinder’s diameter and truncation
errors affect the solution differently for each case.

Some dissipation of the downstream vortices can be observed in both solutions.
The amplitude of the wake decreases and the steep pressure gradient in the vortices
flattens out with increasing distance from the cylinder. This dissipation is mainly a
result of the coarse grid at the far wake region (Fig. 12).

Table I compares the Strouhal number and the drag and lift coefficients for the
Re=200 case with several other experimental and computational results

F1G. 16. The geometry and the grid for the square duct with 90° bend.
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[5, 10, 20, 30-32]. Gerrard’s results [31] summarize experimental results obtained
from several sources. The scatter in both the numerical and the experimental resuits
is quite large, demonstrating the complexity of the problem. The present computa-
tions are within the range of other available data. Note in particular the good
agreement with the recent solution of Rogers [30].

Figure 15 shows the effect of the Reynolds number on the instantaneous
streamline contours for a time which corresponds to the maximal lift coefficient at
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FiG. 17. Convergence of the streamwise velocity profiles with mesh refinement.
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each Reynolds number. The laminar solution is computed in cach case, although in
the real flow the far wake does not remain laminar for Reynolds number higher
than a few hundreds. The extent of the diffusion effects decrease with the increase
of the Reynolds number. The attached separation bubble, where the diffusion effects
are prominent, is the largest for Re =100 and gradually decreases as the Reynolds
number increases. The center of the attached separation bubble moves toward the
lower side of the cylinder as the Reynolds number increases along with a downward
bending of the streamlines. The wavelength of the wake decreases with increasing
Reynolds number, in accordance with the increase in the Strouhal number (see
Fig. 11).
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FiG. 18. Comparison of the streamwise velocity distribution along (a) x=0.25 and (b) x=0.50.
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Flow in a Square Duct with 90° Bend

A square cross section duct with a 90° bend is solved as a test case for a three-
dimensional internal flow. Flows in curved ducts occur in a wide range of practical
applications such as aircraft intakes, turbomachinery blade passages, diffusers, and
heat exchangers. A distinguishing characteristic of the flow in ducts with strong cur-
vature is the generation of streamwise vorticity caused by the centrifugal forces
which generate substantial secondary flow and redistribution of the longitudinal
velocity.

The geometry and the grid used in the present study are shown in Fig. 16. The
symmetry of the problem across the x =0.5 plane is utilized to save mesh points.
The length of the side of the square cross section is set to one unit. The straight
inflow and outflow sections before and after the bend are five units long, and the
radius of curvature of the inner wall in the 90° bend is 1.8 units. Three different
grids with mesh sizes of 21 x 11 x 41, 29 x 15x 51, and 41 x 21 x 61 were used for
solving the problem. The finest mesh is shown in Fig. 16 along with an enlarged
view of the grid at the crossflow plane.

The Reynolds number is 790, based on the average velocity at the inlet. The fully
developed laminar flow in a straight square duct is specified at the upstream bound-
ary, while zero gradient of the velocity is given at the downstream boundary. The
probem is solved time accurately, but only the steady state solution is presented
here, for comparison with the experimental data of Humphrey eral. [32]. The
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experimental data are limited to the distribution of the streamwise velocity over
several sections of the duct.

The computed streamwise velocity profiles over three different meshes are shown
in Fig. 17. The streamwise velocity profile is presented in this figure for six cross
sections along the duct. The location of these cross flow planes is shown in Fig. 16.
At each plane, the streamwise velocity is given along two lines, x =0.25 (Fig. 17a)
and x=0.50 (Fig. 17b). In most of the flow regions shown, the results of the two
finer meshes are in very good agreement with the experimental results of Humphrey
et al. [32], indicating that the solution is essentially grid-independent.

Figure 18 compares the streamwise velocity obtained from the finest grid com-
putation with the numerical results of Rogers [30] (who used the same grid) and
the experimental results of Humphrey et al. [32] at the same six cross flow planes
along the duct. The agreement between the two numerical results is very good in
most of the regions. The agreement with the experimental results is good, especially
at the first four cross sections. Some discrepancy is found between the numerical
and the experimental results at the two downstream planes. Nevertheless, the large
peak of the streamwise velocity near the outer boundary is well predicted in the
numerical computations.

Figure 19 compares the present streamwise velocity solution with the numerical
computation of Rogers [30] and the experimental results of Humphrey et al. [32]
for the same cross sections. For each cross section, the distribution of the velocity
along the x axis is given for five different radial locations. The agreement in the
numerical results is remarkable, bearing in mind that totally different solution

Fig. 20. The crossflow velocity at the plane 0 =90°.
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F1G. 21. Pressure contours at several cross sections.

methods have been used. The agreement with the experimental results is also good
in most of the flow regions.

Figure 20 plots the crossflow velocity at the plane 6 =90°. At that plane, a very
complicated pattern of the secondary flow is already established. Three different
vortices can be seen. A large and relatively strong vortex is found near the inner
wall. A second vortex is found near the side wall, while a relatively weak vortex
exists near the symmetry plane, at about the center of the duct. Figure 21 gives the
pressure contours at several corssflow planes in the bend region and in the region
downstream of the bend. The main vortex is generated in the bend and subse-
quently diffuses in the downstream section.

6. SUMMARY

A method for solving the three-dimensional, unsteady, incompressible Navier—
Stokes equations is presented for generalized curvilinear coordinate systems.
Accuracy is achieved by finite-volume discretization on a staggered mesh along with
consistent approximation of the geometric quantities. The formulation with the
volume fluxes as dependent variables results in a simple extension of the staggered-
mesh approach to generalized coordinate systems and facilitates satisfying the mass
conservation equation to machine accuracy for all the computational cells. The
fractional step method is combined with an approximate factorization of the
momentum equations. Each step of the method is consistent and therefore the
physical boundary conditions can be used. An efficient Poisson solver has been
developed for generalized nonorthogonal coordinate systems using a consistent
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discrete approximation. The discrete approximation of the governing equations is

a
second-order accurate in both time and space. However, in the present study the

pressure computation is replaced by an approximate equation, reducing the
temporal accuracy of the pressure to first order.

Several two- and three-dimensional laminar validation cases have been presented
for both steady and unsteady flows. Good agreement with other numerical and
experimental results is obtained over a wide range of Reynolds numbers. Future

work will include solution of time-dependent, three-dimensional flow fields for more
complicated geometries.

APPENDIX A

In the present implementation of the fractional step solution method, the com-
puted velocity field is the exact solution of the discretized governing equations,
provided the pressure field at the two previous time levels is the correct one and the
system (26a) is solved exactly (without splitting errors). However, the computed
pressure field is not the exact solution of the original equations, but only a first-
order-accurate approximation in time.

For ease of presentation, the equations are discretized only in time and written
in a vector form equivalent to Eqgs. (18a) and (11),

n+1

At
V't =0, (A2)

=G+0,V""' +0,V(4P), (A1)

where G holds all the terms from the previous time levels n,n—1, and AP =
P"*'— P". Without losing generality, it is also assumed that a,=o,=0. The
velocity vector can always be split into

't l=u, +uy (A3)

such that u, is irrotational (see (AS)). Equations (A1) and (A2) can be split and
solved exactly (since (Al) is linear) by the following fractional steps

halCI 2

At G+0(lv u, (A4)

Y _

Ar_G’V(ﬁ (A%
Vou,=-V-u,, (A6)

0=0,Vu,+0,V(4P—¢), (AT)

with the proper boundary conditions. This spliting of the equations introduces a
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new unknown ¢. Note that (A4) is an uncoupled equation, and (A5) and (A6)
should be solved as a coupled system for the unknowns u, and ¢. Equation (A7)
is a stand-alone equation for the unknown AP.

In the present application of the fractional step method, only the steps (A4)-(A6)
are actually solved. Instead of solving (A7) for the pressure, the first-order time-
accurate substitution 4P = ¢ has been used. However, it is easy to verify that steps
(A4)-(A6) yield an exact solution of the velocity, provided P” and P" ' are known
and the proper boundary conditions are specified for u,,. The boundary conditions
for u,, in (A4) are approximated to be the conditions given for the unsplit velocity.
Consequently, an error of order A is introduced at the boundaries.

In the practical application of the method, there is an additional error in the
velocity field because P” is not the exact solution (for # > 1). However, the error in
the velocity (excluding near the boundaries) is still second-order accurate in time
(see (AS) and (A7)).
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